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Divisibility Theory in the integers

“ Integral numbers are the fountainkead of all
mathematics.”

H. MINKOWSKI

“ Number was born in superstition and reared
in mystery, ... numbers were once made the foun-
dation of religion and philosophy, and the tricks of

fignres have bad a marvellons effect on a credulons
people.”
F. W. PARKER

Plato said, “ God is a geometer.” Jacobi changed this to, “ God is an arithmetician.”
Then came Kronecker and fashioned the memorable expression, “ God created the
natural mumbers, and all the rest is the work of man.”

FrLix KLeIN



Divisibility Theory in the integers

Weit-ORoeRnG Provcriz. Eory mempty 3 § o el
nigers ontains  bast elment, tht s, Hhore is sone integr 0 i §

fhat a <b for all b belnging o .

Turorem 1-2 (Principle of Finite Induction). Let § be a set of

positive integers with the properties

(1) 1 belongs to S, and

(i1) whenever the integer k is in S, then the next integer k1 must also
be in §.

Then § 15 the set of all positive integers.
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1. Establish the formulas below by mathematical induction:

a4 1)
2

(@) 14243+ 41n= torall n>1;

b) 1+34+54+ 21 =rforalln>1;

() 12423434+ Fnnt1)= n(rz+12(n+2) foralln > 1;

2 2 2 z_ﬂ(4ﬂ2+l)f n=>1-
(dy 12+3245+..-+(@2n—1)"= 3 orall n>1;

n(n+ 1)

2
(e) 13+23+33—|—--'+n3:[ ] forall » >1.

2. If r=£1, show that
d(?"n+l L 1)

a+ar+ar?+ . 4 ar" = n
r_

for any positive integer 7.
3. Use the Second Principle of Finite Induction to establish that

@ —1l=@—Da"'+a"24+a""°%+..-+a4+1)
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THE BINOMIAL THEOREM

the general binomial expansion will take the form

1 # n
N e A s

of, written mote compactly,

In Particular,
(a + b)) =a+
(a + b)? = a*

b,
- 2ab +

(4 -+ b)® = a° + 3a%h -

(a + b)* = a* -

n

(a4 b= z (’ga" ~kpE,
b2,

- 346° 4 b3,

- 44°h -

- 6a2b? + 4ab® + bt etc.
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Turorem 2-1 (Division Algorithm). Given infsgers a and b, with
b ), there exist unigue integers g and r satisfying

ﬂ:g?é?-{-?', D{_:f{&.
The integers q and r are called, respectively, the quotient and remainder in
the division of a by b.
Pruof: We begin by proving that the set
§ = {,;; — xb | X an iﬂteger; a—xb = 03; L .'

is nonempty. For this, it suffices to exhibit a value of x making
a — xb nonnegative. Since the integer b > 1, we have |a|b>| 4|
and so

a—(—|alp=a+|alb=a4|a| =0,
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Hence, for the choice x= —|a|,a = xbwillliein §, This paves the
way for an application of the Well-Ordering Principle, from which we
infer that the set S contains a smallest integer; call it ». By the
definition of §, thete exists an integer ¢ satisfying

r=a—gb, 0<r,

We argue that 7 < b. If this were not the case, then r > b and

a—(g+b=(a—gh)~b=r—b>0.



Divisibility Theory in the integers

The implication is that the integer « — (g + 1)k has the proper form to
belong to the set 5. But a—(g+ 1)b=r—b <r, leading to a
contradiction of the choice of r as the smallest member of 5. Hence,
y = b

We next turn to the task of showing the uniqueness of g and
r. Suppose that 2 has two representations of the desired form; say

a=gh+r=gb+r,

where 0 <r <&, 0<<r' < b. Then r' —r=b(g— ¢") and, owing to
the fact that the absolute value of a product is equal to the product of
the absolute values,

| r'—r|=blg—4q|.

Upon adding the two inequalities —& << —r < 0 and 0 <<r" == b, we
obtain —& < ' — r < b or, in equivalent terms, | ' — r | << 5. Thus,
b|g—g'| =2k, which yiclds

0<|g—9q'|<1

Since | g — ¢' | is a nonnegative integer, the only possibility 1s that
| ¢g— ¢’ | = 0, whence g = ¢'; this in its turn gives r = r’, ending the
proof.
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CoROLLARY. [f @ and b are integers, with b0, then there exist unigue
integers  and r weh that

a=qb+r, 0<r<]b)

Praofs - Ttis enough to consider the case in which b is negative. Then
| > 0 and the theotem produces unique integers 4"and r for which

a=4'|b|+r, Uﬂr{w‘

Noting that | b| = ~b, we may take 9= ~¢' toarrive ata= b+,
with 0 <r <[],
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To illustrate the Division Algorithm when b <0, let us take
b= —7. Then, for the choices of a= 1, —2, 61, and —59, one gets the
eXpIessions

1=0-7)+1,
—2=1(=T)+5,

61=(-8)(=T)+5,
~59=9(=T)+4.

We wish to focus attention, not so much on the Division Algo-
rithm, as on its applications. As a first example, note that with b= 2 the
possible remainders ate r=0 and r=1. When r={, the integer 4 has
the form a = 24 and is called even; when r = 1, the integer a has the form
a=2g+1and is called odd. Now a* is either of the form (29)% = 44 ot
(2g+ 1) =4+ g+ 1=4k+1. The point to be made s that the
square of an integer leaves the remainder 0 ot 1 upon division bv 4.
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PROBLEMS 2.1

1. Prove that if  and b are integers, with b0, then there exist unigue in-
tegers g and r satisfying a = gb +r, whete 2 <r < 3,

. Show that any integer of the form 6k + 3 is also of the form 36 4 2, but
0t conversely.

3. Use the Division Algorithm to establish that
(@) every odd inteper is either of the form 4£ <1 or 4 4.3;

(b) the square of any integer is either of the form 3f o 35+ 1;
() the cube of any integer is cither of the torm 9%, 9K+ 1, or 9% -8,
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Divisibility:
Deriirion -1, Aninteger b is said to be diisible by an integet

a# (), insymbols « | , If there exists some integer ¢ such that  b=ac
We write 4 / b to indicate that & 15 not divistble by .
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Thus, for example, —12 is divisible by 4, since —12=4(—J).
However, 10 is not divisible by 3; for there is no integer ¢ which makes
the statement 10 = 3¢ true.

There is other language for expressing the divisibility relation
a}bh. One could say that 2 is a divisor of b, that a is a facfor of b or that
b is a multiple of a. Notice that, in Definition 2-1, there is a festriction
on the divisor #: whenever the notation « | b is employed, it is understood
that « 1s different from zeto,

If 4 is a divisor of b, then & is also divisible by —a (indeed, b= ar
implies that b=(—a)(—¢)), so that the divisors of an integer always
occur in pairs. In order to find all the divisots of a given integer, 1t is
sufficient to obtain the positive divisors and then adjoin to them the

cotresponding negative integers. For this reason, we shall usually limit
ourselves to a consideration of pr:asitiv-: divisots.
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Basic Properties of Divisibility

THEOREM 2-2. For intagers 4, b, ¢, the Jollowing hold:

(1) |0,
a|lif and ony if u==+ 1,

la,a|a.

pand ¢ | d then ac | bd.
bandb| e, then a | ¢,

(5 Elﬁﬂmfﬂﬂﬁﬂﬂdﬂfﬁ'{y{fdai&

6 Ie

vand b0, then | a| <| b
and al i, then a| (bx 4+ ¢y) for arbitrary intogers x and
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The Greatest Common Divisor:

Common Divisor:
It  and b ate atbitrary integers, then an integer 4 is said to be
a common divisor of a and b if both d| a and 4| b, Since 1 is a divisot of
every integer, 1is 2 common divisor of 2 and b; hence, thelr set of positive
common divisors is nonempty. Now every integer divides 0, so that if
a=bh=0, then every integet setves as a common divisor of 4 and .

T 4+

DerINITION 2-2. Let 2 and b be given integers, with at least one of
them different from zero. The greatest common divisor of a and b,
denoted by ged (4, b), is the positive integer 4 satisfying

(1) d|zandd|8,
(2) ife]aand¢| b, thene<d
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Examples:

Example 2-1
The positive divisors of —12 ate 1, 2, 3, 4, 6, 12, while those of
Ware1,2,3,5,6,10,15, 30; hence, the positive common divisoss of
—12and 30are 1,2,3, 6. Since 6 is the largest of these integers, it
follows that ged (— 12, 30) = 6. In the same way, one can show that

ged(=5,9)=5, gcd(8,17)=1, and ged(-8, -36)=4.
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