Diophantine Equation

Linear Equation ---- ax+by=c

 Mr.Raut S.R.Head, Dept. of Mathematics
Mrs.K.S.K.College Beed.

Great Mathematician Diophantus:

A Λ E $\Xi A N \triangle P E \Omega \Sigma$ APIEMHTIK Ω A.

DIOPHANTI ALEXANDRINI
 ARITHMETICORVM
 LIBER PRIMVS.

$V M$ animaducrterem te (obleruandiffime mihi Dionyfi) ftudio difcédi explicationcm quaitionum earum qux in numeris proponuntur teneri; aggreflus fum cius rei viam rationémq; fabricari, ex ipfíque fundamétis, quibus tota res nititur, initio petito, naturiac vim numerorum conftitucre. Quod negotuívt videatur fortaffe difficilius(quippeignotumadhuc) cumanimi incipientium ad bonam de re dextré conficienda fpem concipiendam nequaquí fint procliues : tamen cum rua alacritas, tum mea demonftratio efficier, vt facile id comprehendas. Celeriter enim addifcunt, quorum ad difeendi cupiditatem doctrina accedit.

Werancoy HN diptor in in \% 2
 zrwánar or avoudácos ívorti

 owisnxe ri aeajua'g ruf-
 pois фórir π xà súvepiy. lows Mísir somí o weärua dagapí-

Diophantus of Alexandria.

dedication to Dionysius in The Arithmetica $3^{\text {rd }}$ Century AD

"Perhaps the subject will appear rather difficult, inasmuch as it is not yet familiar (beginners are, as a rule, too ready to despair of success); but you, with the impulse of your enthusiasm and the benefit of my teaching, will find it easy to master; for eagerness to learn, when seconded by instruction, ensures rapid progress."

THE DIOPHANTINE EQUATION $a x+b y=c$

Theorem 2.9. The itruar Dipfacatitine equation ax $+b y=$ chasa a oulution if and omp) if $d \subset$, where $d=\operatorname{gcd}(a, b)$. If x_{0}, y_{0} is ary particular solution of of this equation, ther all other solutionsur art given by

$$
x=x_{0}+(b \mid d) t, \quad y=y_{0}-(a \mid d) t
$$

for varying integers t.

Proof:

equation $a x+b y=c$ admits a solution if and only if $d \mid c$, where $d=$ $\operatorname{gcd}(a, b)$. We know that there are integers r and s for which $a=d r$ and $b=d s$. If a solution of $a x+b y=c$ exists, so that $a x_{0}+b y_{0}=c$ for suitable x_{0} and y_{0}, then

$$
c=a x_{0}+b y_{0}=d r x_{0}+d s y_{0}=d\left(r x_{0}+s y_{0}\right),
$$

which simply says that $d \mid c$. Conversely, assume that $d \mid c$, say $c=d t$. Using Theorem 2-3, integers x_{0} and y_{0} can be found satisfying $d=$ $a x_{0}+b y_{0}$. When this relation is multiplied by t, we get

$$
c=d t=\left(a x_{0}+b y_{0}\right) t=a\left(t x_{0}\right)+b\left(t y_{0}\right) .
$$

Hence, the Diophantine equation $a x+b y=c$ has $x=t x_{0}$ and $y=t y_{0}$

Proof: To establish the second assertion of the theorem, let us suppose that a solution x_{0}, y_{0} of the given equation is known. If x^{\prime}, y^{\prime} is any other solution, then

$$
a x_{0}+b y_{0}=c=a x^{\prime}+b y^{\prime},
$$

which is equivalent to

$$
a\left(x^{\prime}-x_{0}\right)=b\left(y_{0}-y^{\prime}\right)
$$

By the Corollary to Theorem 2-4, there exist relatively prime integers r and s such that $a=d r, b=d s$. Substituting these values into the last-written equation and cancelling the common factor d, we find that

$$
r\left(x^{\prime}-x_{0}\right)=s\left(y_{0}-y^{\prime}\right)
$$

The situation is now this: $r \mid s\left(y_{0}-y^{\prime}\right)$, with $\operatorname{gcd}(r, s)=1$. Using Euclid's Lemma, it must be the case that $r \mid\left(y_{0}-y^{\prime}\right)$; or, in other words, $y_{0}-y^{\prime}=r t$ for some integer t. Substituting, we obtain

$$
x^{\prime}-x_{0}=s t .
$$

This leads us to the formulas

$$
\begin{aligned}
& x^{\prime}=x_{0}+s t=x_{0}+(b l d) t, \\
& y^{\prime}=y_{0}-r t=y_{0}-(a / d) t .
\end{aligned}
$$

It is easy to see that these values satisfy the Diophantine equation, regardless of the choice of the integer t; for,

$$
\begin{aligned}
a x^{\prime}+b y^{\prime} & =a\left[x_{0}+(b / d) t\right]+b\left[y_{0}-(a / d) t\right] \\
& =\left(a x_{0}+b y_{0}\right)+(a b / d-a b / d) t \\
& =c+0 \cdot t=c .
\end{aligned}
$$

Thus there are an infinite number of solutions of the given equation, one for each value of t.

An example:

- Determine all solutions in the positive integers of the following Diophantine Equations:
\square a) $18 \mathrm{x}+5 \mathrm{y}=48$.
$\square \mathrm{b}) 54 \mathrm{x}+21 \mathrm{y}=906$.
\square c) $123 \mathrm{x}+360 \mathrm{y}=99$.
$\square 158 \mathrm{x}-57 \mathrm{y}=7$.
a)

First we find $\operatorname{gcd}(18,5)$
By Euclidian algorithm
We have,

$$
\begin{aligned}
& 18=3 \times 5+3 \\
& 5=1 \times 3+2 \\
& 3=1 \times 2+1 \\
& 2=2 \times 1+0
\end{aligned}
$$

- The last non zero remainder is 1 , so that $d=\operatorname{gcd}(18,5)=1$.
Now we eliminate remainders $1,2,3$ successively, We get,

$$
\begin{aligned}
& 1=3-1 \times 2 \\
& =3-1(5-1 \times 3) \\
& =3 \times 2-1 \times 5 \\
& =(18-5 \times 3) \times 2-1 \times 5 \\
& =18 \times 2+5(-7)
\end{aligned}
$$

Multiplying on both sides by 48 we get

$$
48=18 \times 96+5(-336)
$$

Thus $x o=96$ and yo $=-336$ provides one solution of the Diophantine Equation. All other solutions are given by,

$$
x=x_{0}+\frac{b}{d} t \quad \text { and } \quad \begin{aligned}
& y=y_{0}-\frac{a}{d} t \\
&
\end{aligned}
$$

where t is any integer.

$$
x=96+5 t \quad \text { and } \quad y=-336-18 t
$$

To find all solutions in the positive integers t must be chosen to satisfy the inequalities,

$$
\begin{aligned}
& 96+5 t \succ \text { Oand }-336-18 t \succ 0 \\
& 5 t \succ-96 \text { and }-336 \succ 18 t \\
& \text { i.e. } t \succ-19 \frac{1}{5} \text { and }-18 \frac{12}{18} \succ t \\
& \quad-18 \frac{12}{18} \succ t \succ-19 \frac{1}{5} \\
& \quad t=-19
\end{aligned}
$$

Hence , $\quad t=-\mathbf{1 9}$
The required positive solution is, $\mathrm{x}=1$ and $\mathrm{y}=6$.

Thanks

